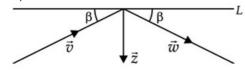
Related Questions with Solutions

Questions

Ouetion: 01

The figure shows non-zero vectors \vec{v}, \vec{w} and \vec{z} with \vec{z} orthogonal to the line L, and \vec{v} and \vec{w} making equal angles β with the line L. Assuming $|\vec{v}| = |\vec{w}|$, if the vector \vec{w} is expressed as a linear combination of \vec{v} and \vec{z} as $\vec{w} = x\vec{v} + y\vec{z}$ then



A.
$$x = 1$$

B. $x = \frac{v \sin \beta}{z}$
C. $y = 2$
D. $y = \frac{2v \sin \beta}{z}$

Solutions

Solution: 01

Let,
$$|\vec{v}| = |\vec{w}| = v$$
, $|\vec{z}| = z$ Given $\vec{w} = x\vec{v} + y\vec{z}$ $\vec{w} \cdot \vec{v} = |\vec{w}| \cdot |\vec{v}| \cos 2\beta = v^2 \cos 2\beta$ $\vec{w} \cdot \vec{z} = |\vec{w}| \cdot |\vec{z}| \cos\left(\frac{\pi}{2} - \beta\right) = vz \sin \beta$ $\vec{v} \cdot \vec{z} = |\vec{v}| |\vec{z}| \cos\left(\frac{\pi}{2} + \beta\right) = -vz \sin \beta$ Now $\vec{w} = x\vec{v} + y\vec{z}$ Taking dot product with \vec{v} , we get $\vec{w} \cdot \vec{v} = x\vec{v} \cdot \vec{v} + y\vec{z} \cdot \vec{v}$ $\Rightarrow v^2 \cos 2\beta = v^2x + y(-vz \sin \beta)$ $\Rightarrow (v)x - (z \sin \beta)y = v \cos 2\beta$ [i] Taking dot product with \vec{w} , we get $\vec{w} \cdot \vec{w} = x\vec{v} \cdot \vec{w} + y\vec{z} \cdot \vec{w}$ $\Rightarrow v^2 = xv^2 \cos 2\beta + yvz \sin \beta$ $\Rightarrow (v \cos 2\beta)x + (z \sin \beta)y = v$ [ii] Solving equation [i] and [ii], we have $x = 1$ and $y = \frac{2v \sin \beta}{z}$

Correct Options

Answer:01

Correct Options: A, D